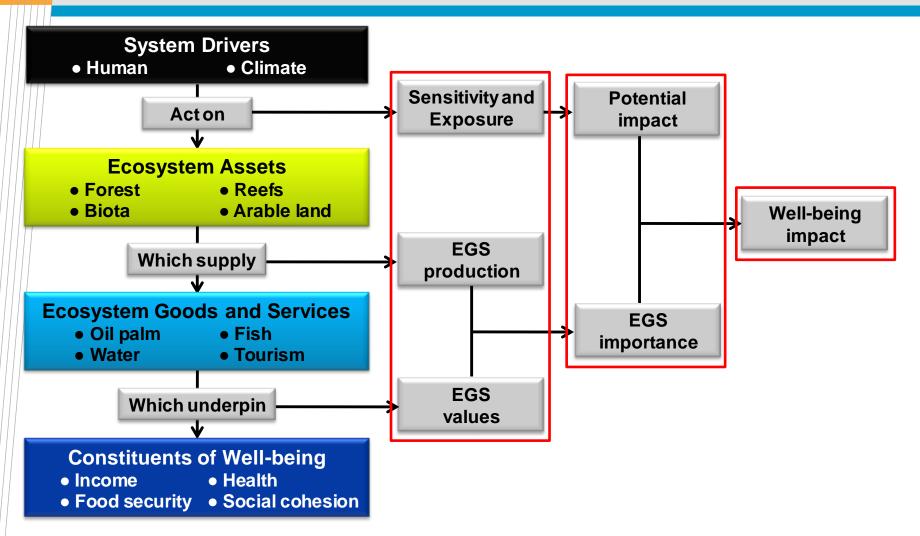


Climate adaptation in the Torres Strait Impact modelling

CSIRO: Tim Skewes, Wayne Rochester, James Butler

Glossary

- System Drivers and Pressures (SDP)
 - ≻Human (Resource use, Land use, Pollution)
 - Climate (Temperature, Rainfall, Sea level rise, Ocean acidification)
- Ecosystem assets / Habitats
 - ≻Coral Reefs
 - ≻Agricultural land
 - ➢Forest
- Ecosystem goods and services (EGS)
 - ≻Fish
 - ≻Oil palm
 - ≻Water
- Constituents of well-being (CoWBe)
 - ≻Health
 - ≻Income
 - ➤Food security
 - ➤Social cohesion



Conceptual diagram

Impact modelling approach

Impact modelling

- 1. Impacts to EGS from future Driver and Pressure scenarios
 - Change in EGS state
 - Future impact on livelihoods and well-being
- 2. Combine with community adaptive capacity to indicate Vulnerability

Approach

Designed: do what is in our practical means to help co-ordinate a respond to currently unfolding and potential future changes in our environment

Information we require (sensitivities value) not always available in the literature

- Consulting our peers and using best available data

The approach is:

- semi-quantitative (relative scale where potential impact is assessed on a scale of 1 to -1)
- level of detail considered sufficient (note: always room for improvements)
- relies on expert opinion and local stakeholder review and modification

Limitations/simplifications to our study (can not consider all aspects) Point out key assumptions

System Drivers and Pressures (SDP)

• "Business as usual" pressures

Climate (Scenario A2, medium-high emissions)

≻Temperature, SST

➢Rainfall

- Sea level rise
- Acidification
- Human (Population growth current trajectory)

➤Utilisation

≻Land use

➢Pollution

Assumption: climate and human impacts on habitats (e.g. seagrass/coral reefs) are implicitly accounted for the EGS (plan for this to be explicitly accounted for in future)

Adaptation strategies in NTB

Ecosystem goods and services

Agricultural

Banana Betel nut Cassava Chickens Coconut Garden vegetables Mangoes Pawpaw Pigs (domestic) Rice Sago Sweet potato Taro

Freshwater

Yams

Finfish (tilapia, snakehead) Prawn (Macrobrachyia) Saratoga Water (fresh and rainwater) Water (ground)

Estuarine

Marine

Finfish pelagic (queenfish)

Pearlshell (aquaculture)

Pearlshell (goldlip)

Rock lobster

Sponge (wild) Tourism (fishing) Turtles (flatback)

Turtles (green)

Turtles (hawksbill)

Prawn (banana, tiger)

Sponge (aquaculture)

Dugong

Mackerel

Barramundi Barramundi (aquaculture) Crabs (blue) Crabs (mud) Crocodiles Crocodiles (farmed) Finfish coastal (trevally, mullet etc) Mangrove timber

Forest

Birds Non-timber building material (palms) Pigs (wild) Rusa deer Rusa deer (farming) Timber for building/boats/sale

Reef

Wallabies

Beche-de-mer Clams (Tridacnid) Coral lime Other molluscs (and from mangrove) Reeffish Sharks and rays Tourism (reef) Trochus

Sensitivity to stressors

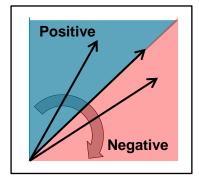
Sensitivity scored on a scale from:

-1 (acutely negatively sensitive with no prospect for natural adaptation)

to

+1 (acutely positively sensitive and/or full adaptation capacity) to the threat

Accounts for factors such as tolerance thresholds (some marine species have acute thresholds e.g. corals and other species have a broader threshold e.g. crocodiles).


Sensitivity: Degree to which an ecosystem asset is affected by or responsive to a driver/stressor.

Consequences to change in stressors

Temperature

In general, the productivity/growth rate of species increases with temperature, up to an optimal temperature, after which it declines with increasing temperature

SLR Inundation interaction

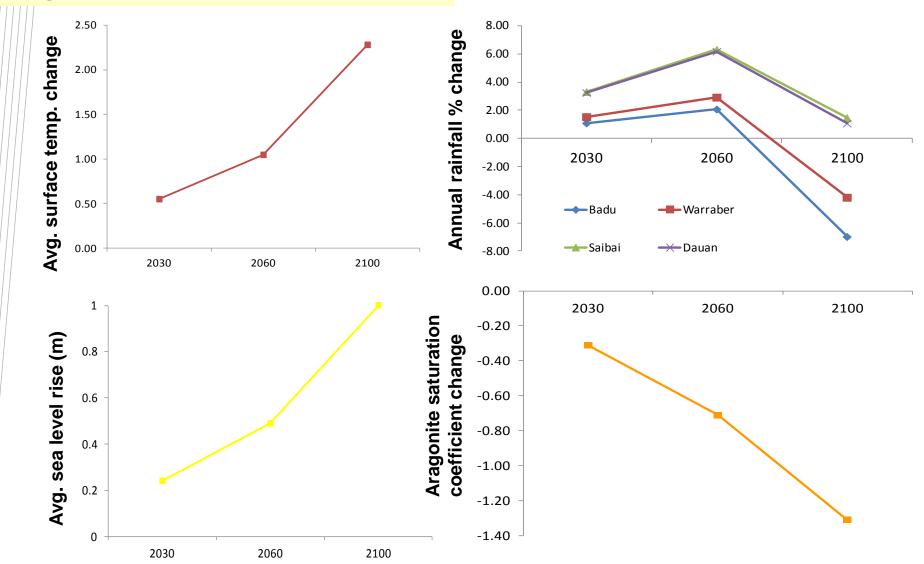
Rainfall Agriculture - probably decreased production with decreased rainfall

Acidification Echinoderms and coral very sensitive (Impacts on calcifying species; calcification)

Potential Impact - cumulative impacts – summed across the multiple stressors (combining the possible positive with negative impact to give overall impact)

Exposure to stressors

Exposure was assessed against each asset on a scale from: 0 (no exposure/change in stressor) to 1 (complete exposure/change in stressor).


Exposure scores were estimated at future time-step of 2030, 2060 and 2100

Assumptions: Assessed the projected change in a 30km radius around each community

Projections about change stressor – used to determine exposure

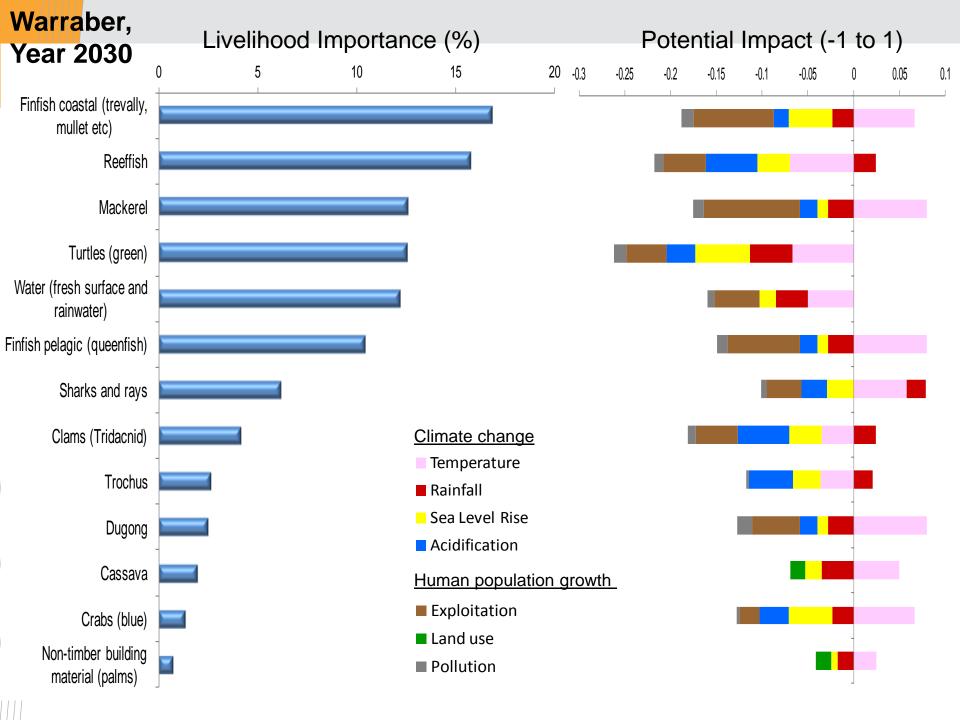
Change from 2012 across the Torres Strait;

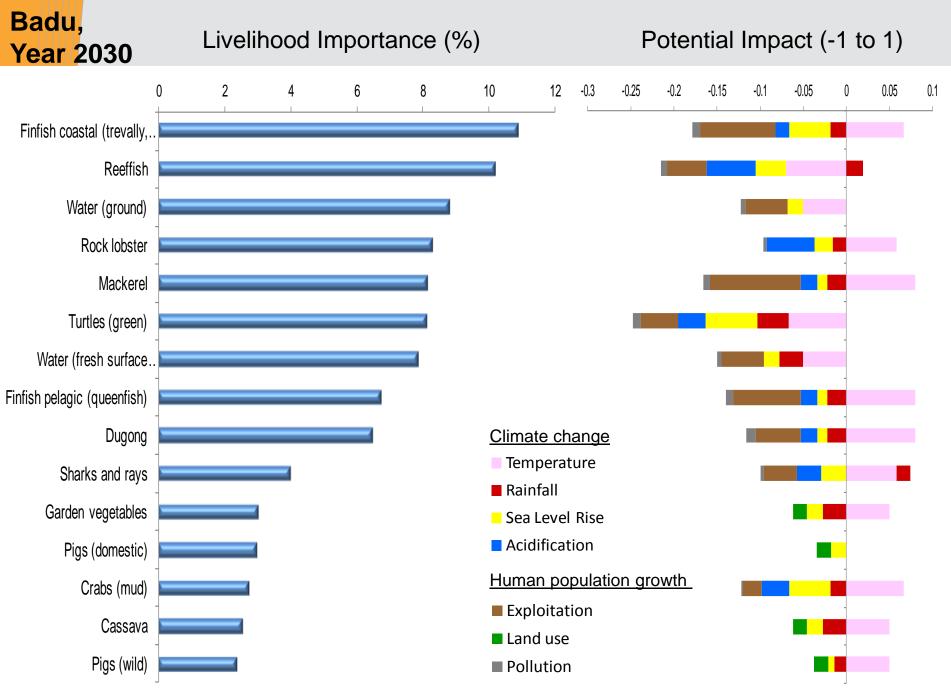
Threshold – Critical level of population level

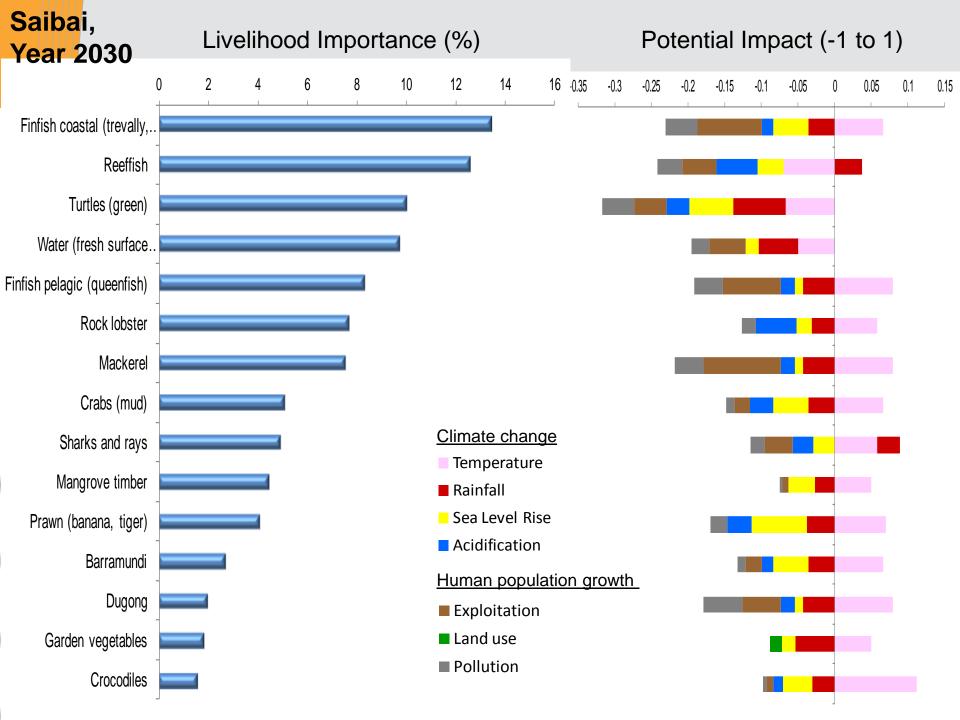
Population asset – may no longer provides a service before it is completely exploited (critical level of population level)

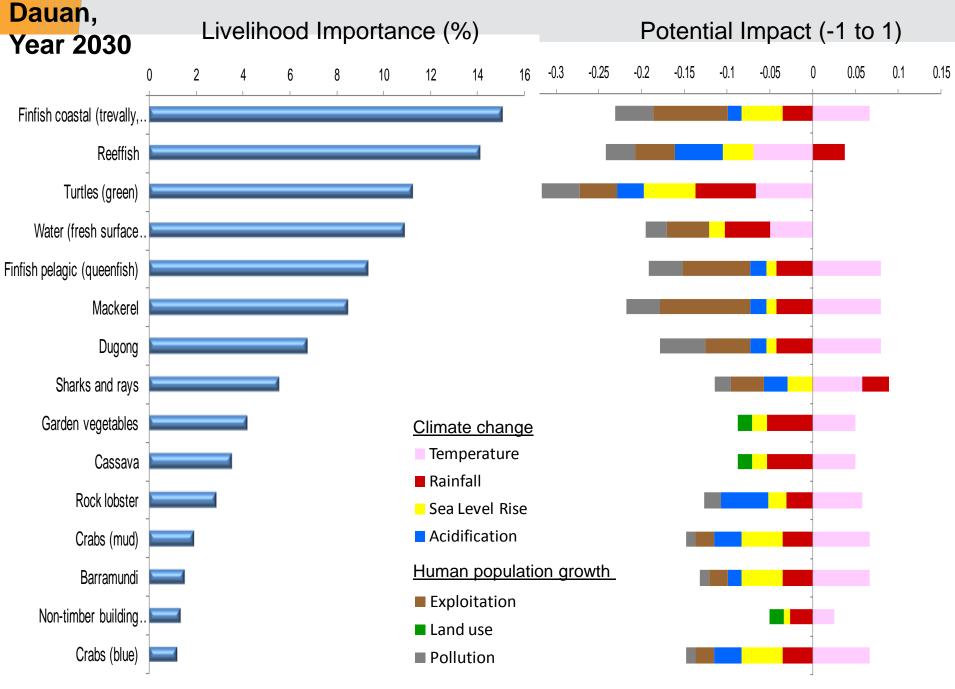
Assumption: consider both current population status for each EGS and population level when EGS no longer provides a service factoring this into the potential impact

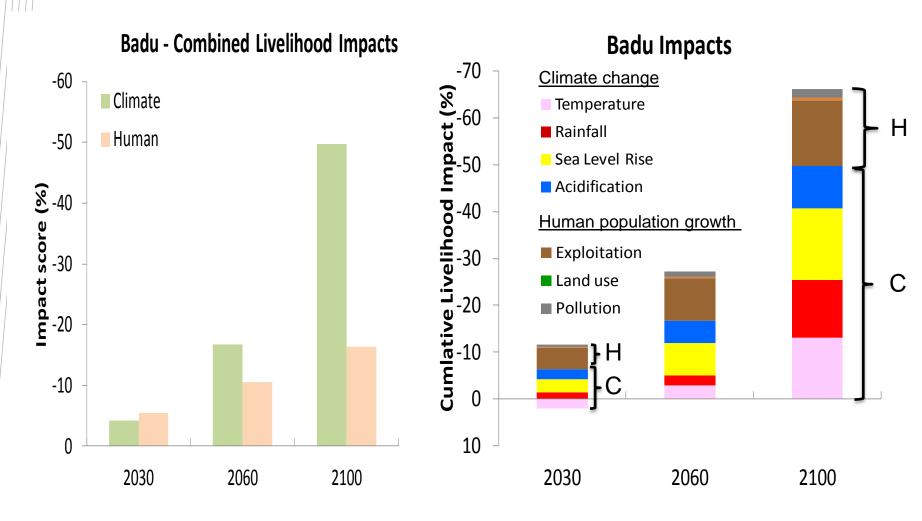
Simple example to help with interpretation of potential impact/threshold:


Species X				
Current Pop. Status	Pop. level when EGS no longer	Cumulative potential impact	Projected pop. level given	
	provides a service	at 2100	relative potential	Threehold
0.80	0.20	-0.83	0.13	Threshold exceeded
				below critic

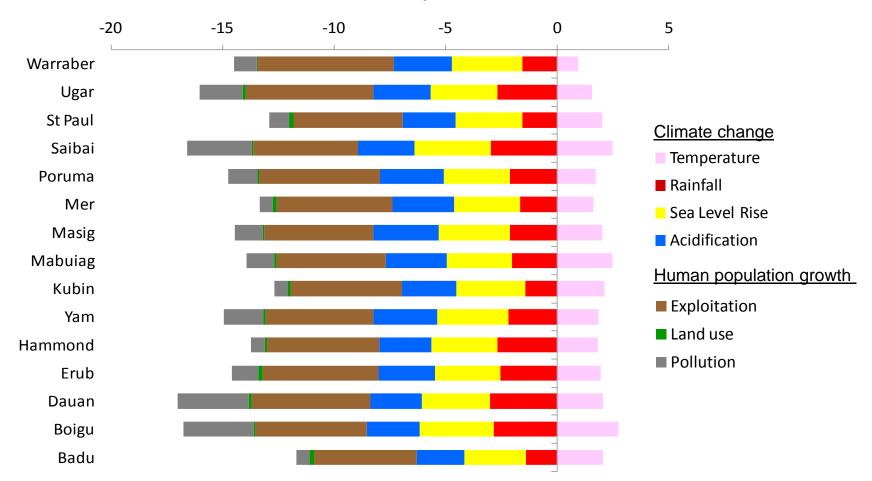

level


Re-capping on variables

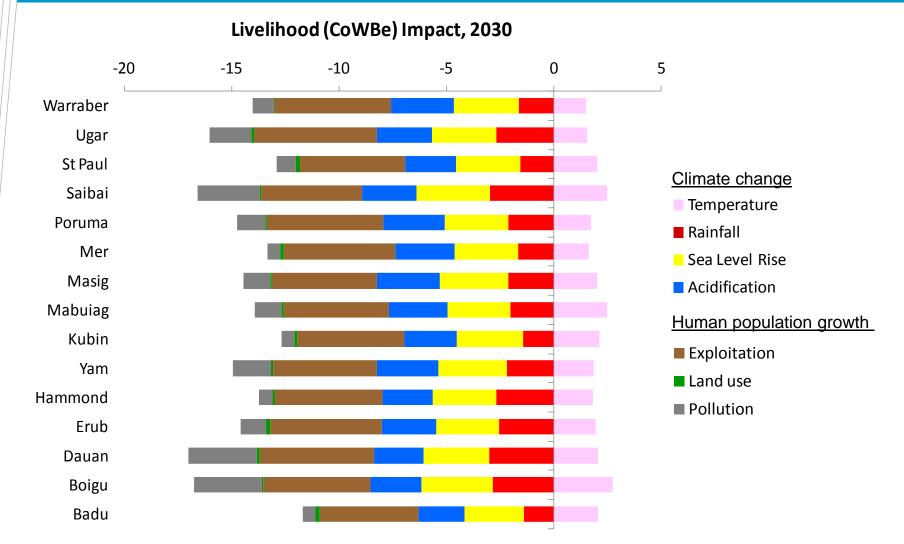

		1
55 alternative assets (populations):	List presented above	
15 Communities in the Torres Strait:	Badu, Boigu, Dauan, Erub, Hammond, Yam, Kubin, Mabuiag, Masig, Mer, Poruma, Saibai, St Paul, Ugar, and Warraber	• Whole of system
7 stressors/pressures:	Temperature, rainfall, Sea Level Rise, Acidification, Utilisation, Land use, Pollution	• Multiple impact
3 alternative time-steps:	2030, 2060 and 2100	



Climate Vs Human Impacts


Frequency of exceeded threshold – Critical level of population level

Community	2030	2060	2100
Badu	0	0	3; Turtles (flatback, green and hawksbill)
Boigu	0	0	6; Finfish, <u>turtles</u> , clams and reef-fish
Dauan	0	0	6; Finfish, turtles, clams and reef-fish
Erub	0	0	3; Turtles (flatback, green and hawksbill)
Hammond	0	0	5; Finfish, <u>turtles</u> and <u>sponge</u>
Yam	0	0	4; Finfish and <u>turtles</u>
Kubin	0	0	3; Turtles (flatback, green and hawksbill)
Mabuiag	0	0	3; Turtles (flatback, green and hawksbill)
Masig	0	0	3; Turtles (flatback, green and hawksbill)
Mer	0	0	0
Poruma	0	0	3; Turtles (flatback, green and hawksbill)
Saibai	0	0	6; Finfish, <u>turtles</u> , clams and reef-fish
St Paul	0	0	4; Finfish and <u>turtles</u>
Ugar	0	0	3; Turtles (flatback, green and hawksbill)
Warraber	0	0	3; Turtles (flatback, green and hawksbill)


Communities - Total Impact, 2030

Livelihood (CoWBe) Impact, 2030

Communities - Total Impact, 2030

Livelihood Impacts, 2030

Community	Well-being Impact 2030	Well-being Impact 2060	Well-being Impact 2100
Badu	-9.6	-27.2	-66.1
Kubin	-9.8	-30.0	-72.5
St Paul	-10.2	-30.1	-71.2
Mabuiag	-10.8	-31.7	-72.6
Mer	-11.2	-31.5	-63.9
Hammond	-11.3	-32.6	-75.3
Warraber	-11.8	-33.4	-72.2
Masig	-11.8	-33.3	-66.5
Erub	-12.0	-32.5	-61.6
Poruma	-12.2	-34.0	-69.3
Yam	-12.4	-34.2	-70.3
Ugar	-13.5	-35.9	-68.4
Boigu	-13.6	-36.4	-71.4
Saibai	-13.7	-36.0	-69.6
Dauan	-14.3	-36.9	-69.5

Livelihood Impacts, 2060

Community	Well-being Impact 2030	Well-being Impact 2060	Well-being Impact 2100
Badu	-9.6	-27.2	-66.1
Kubin	-9.8	-30.0	-72.5
St Paul	-10.2	-30.1	-71.2
Mabuiag	-10.8	-31.7	-72.6
Mer	-11.2	-31.5	-63.9
Hammond	-11.3	-32.6	-75.3
Warraber	-11.8	-33.4	-72.2
Masig	-11.8	-33.3	-66.5
Erub	-12.0	-32.5	-61.6
Poruma	-12.2	-34.0	-69.3
Yam	-12.4	-34.2	-70.3
Ugar	-13.5	-35.9	-68.4
Boigu	-13.6	-36.4	-71.4
Saibai	-13.7	-36.0	-69.6
Dauan	-14.3	-36.9 🔶	-69.5

Livelihood Impacts, 2100

Community	Well-being Impact 2030	Well-being Impact 2060	Well-being Impact 2100	
Badu	-9.6	-27.2	-66.1	
Kubin	-9.8	-30.0	-72.5	
St Paul	-10.2	-30.1	-71.2	
Mabuiag	-10.8	-31.7	-72.6	
Mer	-11.2	-31.5	-63.9	
Hammond	-11.3	-32.6	-75.3	
Warraber	-11.8	-33.4	-72.2	
Masig	-11.8	-33.3	-66.5	
Erub	-12.0	-32.5	-61.6	
Poruma	-12.2	-34.0	-69.3	
Yam	-12.4	-34.2	-70.3	
Ugar	-13.5	-35.9	-68.4	
Boigu	-13.6	-36.4	-71.4	
Saibai	-13.7	-36.0	-69.6	
Dauan	-14.3	-36.9	-69.5	

Tim Skewes and Cass Hunter

Phone: (07) 3833 5963, (07) 40595005 Email: tim.skewes@csiro.au Web: www.csiro.au

Thank you

Contact Us

Phone: 1300 363 400 or +61 3 9545 2176

Email: enquiries@csiro.au Web: www.csiro.au_{National} csiro